Exploratory search during directed navigation in C. elegans and Drosophila larva
نویسندگان
چکیده
Many organisms-from bacteria to nematodes to insect larvae-navigate their environments by biasing random movements. In these organisms, navigation in isotropic environments can be characterized as an essentially diffusive and undirected process. In stimulus gradients, movement decisions are biased to drive directed navigation toward favorable environments. How does directed navigation in a gradient modulate random exploration either parallel or orthogonal to the gradient? Here, we introduce methods originally used for analyzing protein folding trajectories to study the trajectories of the nematode Caenorhabditis elegans and the Drosophila larva in isotropic environments, as well as in thermal and chemical gradients. We find that the statistics of random exploration in any direction are little affected by directed movement along a stimulus gradient. A key constraint on the behavioral strategies of these organisms appears to be the preservation of their capacity to continuously explore their environments in all directions even while moving toward favorable conditions.
منابع مشابه
Navigational decision making in Drosophila thermotaxis.
A mechanistic understanding of animal navigation requires quantitative assessment of the sensorimotor strategies used during navigation and quantitative assessment of how these strategies are regulated by cellular sensors. Here, we examine thermotactic behavior of the Drosophila melanogaster larva using a tracking microscope to study individual larval movements on defined temperature gradients....
متن کاملβH-spectrin homolog required for Caenorhabditis elegans morphogenesis
Morphogenesis transforms the C. elegans embryo from a ball of cells into a vermiform larva. During this transformation, the embryo increases fourfold in length; present data indicates this elongation results from contraction of the epidermal actin cytoskeleton. In sma-1 mutants, the extent of embryonic elongation is decreased and the resulting sma-1 larvae, although viable, are shorter than nor...
متن کاملsma-1 encodes a betaH-spectrin homolog required for Caenorhabditis elegans morphogenesis.
Morphogenesis transforms the C. elegans embryo from a ball of cells into a vermiform larva. During this transformation, the embryo increases fourfold in length; present data indicates this elongation results from contraction of the epidermal actin cytoskeleton. In sma-1 mutants, the extent of embryonic elongation is decreased and the resulting sma-1 larvae, although viable, are shorter than nor...
متن کاملKlinotaxis as a basic form of navigation
In their article, Gomez-Marin and Louis (2014) found that runs in Drosophila larval chemotaxis bend toward the direction of higher concentration. This steering process called weathervaning or klinotaxis was previously discovered in the worm C. elegans (Ward, 1973; Iino and Yoshida, 2009) and raises the question: how is it performed? Although Gomez-Marin and Louis (2014) found that run orientati...
متن کاملThe Flamingo ortholog FMI-1 controls pioneer-dependent navigation of follower axons in C. elegans.
Development of a functional neuronal network during embryogenesis begins with pioneer axons creating a scaffold along which later-outgrowing axons extend. The molecular mechanism used by these follower axons to navigate along pre-existing axons remains poorly understood. We isolated loss-of-function alleles of fmi-1, which caused strong axon navigation defects of pioneer and follower axons in t...
متن کامل